Climate Resilience and Canadian Water Infrastructure

Presenter: Darren Swanson

Event: Platform WOW - Water Resilient Infrastructure in Canada and The Netherlands **Date:** May 20, 2022

Report on Advancing the Climate Resilience of Canadian Infrastructure

- Compile latest information on climate hazards and impacts on Canadian infrastructure;
- Take stock of resilience options for addressing these climate risks; and
- Capture the range of policies, practice guidance, and financing options that have emerged in recent years at the federal level in Canada and internationally.

https://www.iisd.org/publications/climate-resilience-canadian-infrastructure

CANADA'S CHANGING CLIMATE PROJECTED CHANGES THIS CENTURY

Canada's climate has warmed and will warm further in the future, driven by human influence. Global emissions of carbon dioxide from human activities will largely determine how much warming the country—and the world—will experience in the future.

Median values. Changes are for 2081-2100 relative to the 1986-2005 reference period.

High and low global emission scenarios. The high emission scenario RCP 8.5 is associated with an increase in global average temperature of about 3.7 °C by late century relative to the 1986-2005 reference period. The low emission scenario RCP 2.6 is associated with an increase in global average temperature of about 1.0 °C by late century relative to the 1986-2005 reference period. "Hot day = daily maximum temperature is above 30°C

https://changingclimate.ca/site/assets/uploads/sites/2/2019/04/6269 infographic Canada v05.pdf

West Coast - too wet

West Coast - too dry

East Coast - too wet

The Middle - too dry...too wet

The North - too warm

Key Observation #1

Considerable activity over the past decade, as evidenced by the sheer volume of literature available on resilience options for infrastructure. This applies to all infrastructure types reviewed:

- Wastewater and stormwater
- Buildings
- Water supply
- Transportation
- Marine
- Energy and ICTs

Three categories of resilience options:

- 1. Risk-informed planning and assessment
- 2. Structural changes
- 3. Enhanced monitoring and maintenance

Water Supply Infrastructure

Climate hazard	Examples of infrastructure impacts	Examples of resilience options
Changing	 Power outages due to electrical storms	 Enhanced and redundant backup
precipitation	affecting pumping stations Reduced structural integrity and/or	power supplies Adopt structural adaptations to
patterns	accelerated deterioration of dams	dams, weirs, and drainage canals
Permafrost	 Rupture of water lines and storage	 Use of polystyrene insulation
degradation	tanks	beneath roads
Storm surges and	 Flooding of treatment plant	 Seawalls, dikes, floodwalls, levees,
sea level rise	infrastructure	local surge barriers, etc.
Drought	 Reduced source of potable water Cracking of earthen dams, increasing flood risk 	 Demand management and use of natural infrastructure such as bioswales, constructed wetlands, rain gardens, and bioretention systems Structural adaptations to dams, weirs, and drainage canals

Sources: ¹Bush & Lemmen, 2019; ²ECCC, 2016; ³ECCC, 2020; ⁴Melillo et al., 2014; ⁵Clavet-Gaumont et al., 2017; ⁶Amec Foster Wheeler & Credit Valley Conservation, 2017; ⁷Lemmen & Warren, 2004; ⁸McClearn, 2020; ⁹Felio, 2015; ¹⁰EPA, 2021.

Wastewater and Stormwater Infrastructure

1.1

1

Climate hazard	Examples of infrastructure impacts	Examples of resilience options
Heat	 Higher temperature streams and decreased streamflow lead to more concentrated influent flows that are harder to disinfect 	 Apply natural infrastructure Install effluent cooling systems
Changing precipitation patterns	 Exceeding stormwater/drainage systems 	 Increased capacity of stormwater and drainage collection systems Reduce or green up impervious surfaces (e.g., roofs, parking areas)
Seasonal temperature changes	 Increased frequency, duration, and severity of thermal cracking and rutting 	 Use phase-change materials to reduce the number of freeze/thaw cycles
Storm surges	 Damaged or flooded structures that reduce treatment efficiency 	 Hybrid built and natural infrastructure solutions (e.g., terraced berms, drainage improvements, bulkheads, beach nourishment, reinforced dunes, offshore breakwaters, living shorelines)

Key Observation #2

Natural infrastructure is becoming a mainstream option for enhancing the resilience of built infrastructure and communities.

https://www.winnipegfreepress.com/local/province-opens-red-river-floodway-569554112.html

Co-benefits:

Food production Species habitat Agroforestry -

Engineered Wetlands

Key Observation #3

A diverse range of strategies, policies, guides, standards, codes, and financing programs have emerged to help inform resilience options for infrastructure.

For example, at the federal level in Canada:

- Climate Lens General Guidance (and Public Infrastructure Engineering Vulnerability Committee - PIEVC risk assessment guidance)
- Climate-Resilient Buildings and Core Public Infrastructure Initiative
- Investing in Canada Infrastructure Program and the Disaster Mitigation and Adaptation Fund
- Municipalities for Climate Innovation and Asset Management programs implemented by the Federation of Canadian Municipalities

But is it all enough?

The Gap

Overall infrastructure gap of \$150 billion to \$1 trillion (First Nations ~\$30 billion)

The State

2019 Canadian Infrastructure Report Card: "concerning amount of municipal infrastructure in poor or very poor condition".

(Advisory Council on Economic Growth, 2016) (BluePlan Engineering, 2019, p. 9) (Council of Canadian Academies, 2019)

The Risk

infrastructure ranked

as Canada's most

consequential risk

Physical

area

The Consequence

CICC 2021 Report concluding Canada's infrastructure is not prepared for the climate crisis

Canada's infrastructure is not prepared for the climate crisis.

How big of a problem is that, and what can we do about it?

(Canadian Climate Institute, 2021)

While there has been considerable activity to increase the climate resiliency of infrastructure in Canada, greater effort and investment are needed to match the expanding scale of the issue.

Informing the Way Forward

Extreme heat, heat waves

Seasonal temperature increases resulting in permafrost degradation and changing freeze-thaw cycles

Changing precipitation

Permafrost degradation

Sea ice changes

Storm surges, high tides, rising sea levels

Fluctuations in inland water levels

High winds

Increased incentive for implementing resilience options

Risk-informed planning and assessment

Structural changes

Enhanced monitoring and maintenance

Integrating natural infrastructure solutions

More and diverse sources of financing

Public-private partnerships and investment

Greater use of innovative financing options

Whole-of-society approach

Systems thinking and policy coherence

Flexible, robust, and redundant options and pathways

Greater consideration of interrelated social factors

Miigwhech, Maarsii, Nakurmiik, Merci, Thank you!

For more information:

iisd.org Twitter:@iisd_news Email: dswanson@novelfutures.com